Nane bianche, stelle di neutroni e buchi neri.
Eccoci nuovamente qui a proseguire la nostra chiacchierata sulle sorgenti a raggi X presenti nel nostro Universo. Tra quelle compatte possiamo annoverare le nane bianche, le stelle di neutroni e i buchi neri. Il gas che fluisce nell’intensa attrazione gravitazionale di questi oggetti viene riscaldato dall’attrito a milioni di gradi durante la sua caduta. Alcuni tipi di stelle binarie possono contenere uno di questi oggetti ultracompatti che danza assieme ad una compagna molto più grande in grado di fornirgli il materiale la cui caduta provoca emissioni luminose ai raggi X. La radiazione emessa da un tale corpo caldo è estremamente intensa, tanto che i raggi X possono essere visti da regioni molto piccole. Spesso gli oggetti più freddi devono essere molto grandi per essere visualizzati nei telescopi poiché irradiano a lunghezze d’onda più lunghe e meno energetiche. Questa capacità di addentrarsi nelle zone più interne di alcuni degli oggetti più bizzarri ed energetici dell’Universo è un potente incentivo a costruire telescopi a raggi X sempre più sensibili.

Galassie attive
Stranamente, un’immagine a raggi X della Luna ha portato gli astronomi a comprendere meglio la natura delle galassie in tutto l’Universo. Una straordinaria immagine scattata nel 1990 dal satellite ROSAT mostra chiaramente il disco della Luna, con un lato illuminato dai raggi X riflessi dal Sole e l’altro visto in sagoma oscurata contro quello che sembra essere un cielo con lo sfondo luminoso a raggi X. Per molti anni non è stato chiaro cosa potesse produrre esattamente questo fondo cosmico di raggi X. È un bagliore uniforme come il fondo cosmico a microonde visto nello spettro del radio, o proviene da una moltitudine di deboli sorgenti individuali? Questo background è stato rilevato dai primi esperimenti missilistici nei primi anni ’60 e il mistero è persistito per decenni.

Mano a mano che il potere risolutivo dei telescopi a raggi X migliorava, divenne evidente che, a differenza del fondo cosmico a microonde realmente diffuso, il fondo a raggi X sembrava essere in gran parte composto da singole sorgenti distribuite in modo molto uniforme nel cielo. Se la radiazione avesse avuto origine nella nostra Via Lattea, tale uniformità sarebbe stata difficilmente comprensibile e quindi si è ipotizzato che le sorgenti fossero a grandi distanze dette anche “cosmologiche”. Ora è diventato chiaro che la maggior parte della radiazione ha origine in galassie attive che emettevano raggi X quando l’Universo si trovava nel pieno della sua mezza età.
Anche alcune galassie relativamente vicine emettono grandi quantità di radiazioni X. In molte di esse, questa radiazione sembra essere associata al rilascio di energia dal materiale che circonda i buchi neri supermassicci che potrebbero risiedere al centro di esse. Quando questo buco nero è in attività ed irradia, viene chiamato nucleo galattico attivo o AGN. Solo una piccola parte delle galassie a noi vicine ha buchi neri sempre in attività. Tuttavia, questa frazione sembra essere stata più grande nel Medioevo cosmico, come si può vedere nell’immagine del XMM-Newton Deep Field nella figura seguente.

Questo sembra essere stato un momento speciale nella storia dell’Universo, abbastanza tardi affinchè i buchi neri al centro delle galassie diventassero grandi, ma abbastanza presto perché le galassie fossero ancora molto ricche di gas per alimentare l’attività. Oggi il gas nelle galassie è più stabile e raramente si avvicina abbastanza da alimentare il buco nero al centro e creare un AGN.
Cluster di Galassie
Le galassie non sono solitarie, ma tendono a formarsi in ammassi, a volte contenenti centinaia o addirittura migliaia di membri. Attraverso la storia cosmica crescono attraendo gravitazionalmente singole galassie e piccoli gruppi di galassie. Tali ammassi sono anche fonti significative di luce a raggi X. Infatti, più grande è l’ammasso, più luminoso appare generalmente il bagliore diffuso dei raggi X.


A volte ci vuole qualcosa che puoi vedere per aiutarti a capire qualcos’altro che non puoi vedere. È il caso della cosiddetta materia oscura nelle galassie e negli ammassi. Gli astronomi che misurano i moti delle stelle nelle galassie e delle galassie negli ammassi, calcolano che ci deve essere molta più massa intorno ad esse rispetto alla quantità di materia che possiamo vedere, anche usando l’intero spettro elettromagnetico. Per questo gli è stato dato il nome di “Materia oscura” – in parte perché non possiamo vederla, ma forse più come segno della nostra ignoranza sulla sua vera natura. Un lavoro svolto dagli scienziati nello spettro dei raggi X e pubblicato nel 2006, tuttavia, ha contribuito a confermare la realtà della materia oscura e a darci maggiori informazioni sulle sue proprietà. Gli astronomi hanno assemblato l’immagine composita del “Bullet Cluster” sotto riportata.

Questo è in realtà composto da due ammassi in collisione, molti dei quali possono essere visti nell’immagine di sfondo a luce visibile. Sovrapposti a questo vi sono l’emissione di gas a raggi X (rosso) e una mappa della maggior parte della massa dell’ammasso (blu). La concentrazione di massa viene determinata utilizzando l’effetto della lente gravitazionale per indicare dove la luce delle galassie sullo sfondo dietro l’ammasso proiettile è maggiormente distorta dalla massa dell’ammasso. Dove la distorsione è maggiore, il Bullet Cluster deve avere la massa maggiore.
L’offset tra il gas (rosso) a raggi X e la misurazione della massa (blu) mostra una sorprendente differenza tra la materia normale e quella oscura nei due ammassi. Il grumo rosso a forma di proiettile sulla destra è il gas caldo di un ammasso, che è passato attraverso il gas caldo dell’altro ammasso più grande durante la collisione. Entrambe le nubi di gas sono state rallentate da una forza di trascinamento, simile alla resistenza dell’aria, durante la collisione. Al contrario, la materia oscura non è stata rallentata dall’impatto perché – a quanto pare – non interagisce direttamente con se stessa o con il gas se non attraverso la gravità. Pertanto, durante la collisione i grumi di materia oscura dei due ammassi si sono mossi davanti al gas caldo, producendo la separazione della materia oscura da quella visibile. Questo risultato è una prova diretta che la maggior parte della materia negli ammassi è oscura e molto diversa dalla materia normale!
Per il momento ci fermiamo qui. Nel prossimo post concluderemo il nostro viaggio a cavallo dei raggi X, esplorando anche la parte di Universo più vicina a noi: il sistema solare. Stay tuned!