Osservatori spaziali… 2° parte.

Continuiamo oggi la nostra chiacchierata sugli osservatori spaziali. Essi sono costituiti da una serie di componenti elettronici e meccanici progettati per supportare le estreme condizioni che affronteranno durante le fasi del lancio e durante il ciclo di vita nello spazio. Forti vibrazioni, sbalzi di temperatura, radiazioni, sono alcuni dei fattori da tenere in considerazioni durante la progettazione della componentistica di un osservatorio spaziale. Oltre alla qualità dei materiali utilizzati, la ridondanza di ogni componenti rappresenta un punto di forza per garantire l’alta affidabilità del sistema.

Come sono realizzati?

La maggior parte degli osservatori spaziali sono molto simili a quelli terrestri, con alcune differenze fondamentali. Sebbene siano simili a piccole città autonome nello spazio, un satellite da ricerca è composto da una serie di componenti. Lo specchio primario, il tubo del telescopio, i rilevatori, le batterie, i pannelli solari, gli apparati di comunicazione, i computers, gli strumenti di navigazione e centinaia o migliaia di sensori.

Lo specchio principale

Rappresenta una caratteristica comune per la grande maggioranza degli osservatori spaziali. Non è l’ingrandimento il fattore predominante quanto l’ampiezza dell’area di raccolta della luce. Maggiore è la superficie, più luce sarà catturata permettendo in tal modo l’osservazione degli oggetti più deboli. Inoltre più un satellite da ricerca si allontana dallo spettro del visibile per le proprie osservazioni, maggiore sarà il grado di specializzazione dello specchio e delle strutture a corredo.

Quando osserviamo la luce visibile, si utilizzano specchi normali e la luce giunge su di essi quasi perpendicolare 90°. Diversamente i raggi X avendo energie considerevoli attraverserebbero semplicemente lo specchio singolo quindi si utilizzano specchi cilindrici nidificati in modo che il raggio arrivi con un angolo d’incidenza pari a mezzo grado quindi viene leggermente deviato dalla serie di specchi. Alla fine della sua corsa viene messo a fuoco dai rilevatori posti in fondo al tubo che dev’essere abbastanza lungo. Un satellite per la ricerca dei raggi gamma non può utilizzare uno specchio e il fascio di particelle deve colpire direttamente il rilevatore (a volte denominato maschera codificata) in modo da costruire correttamente l’immagine desiderata.

Image result for telescopio raggi gamma coded mask
Coded mask per la rilevazione dei raggi gamma

Il tubo del telescopio

Lo scopo principale del tubo è quello di proteggere lo specchio e i rilevatori dalla luce indesiderata e di stabilizzare l’osservatorio. Le enormi e violente escursioni di temperatura nello spazio fanno letteralmente “respirare” il telescopio, contraendolo quando è freddo ed espandendolo quando è caldo. Per gli strumenti ad alta precisione, spesso posizionati con nanometrica accuratezza, può essere un problema. E’ necessario quindi provvedere di volta in volta alla messa a fuoco del telescopio a causa delle continue escursioni termiche. Per questo motivo, più risulterà solido il tubo, minore sarà il “respiro” del telescopio. Ma questa solidità porterà inevitabilmente all’aumento del peso complessivo dell’osservatorio e ai costi di progettazione e costruzione. Un ingegnere aerospaziale deve essere uno spietato imballatore! E’ estremamente costoso costruire e lanciare satelliti (circa 100.000€ per chilogrammo) così ogni componente dev’essere accuratamente misurato e pesato per non incappare in costi proibitivi che hanno sempre e comunque ripercussioni a livello pubblico.

I rilevatori

Sono componenti su cui gli astronomi ripongono molta fiducia. E’ qui che la luce viene raccolta e convertita in segnali elettrici. Essi sono gli occhi del telescopio. La fisica di questi sensori dipende dalla lunghezza d’onda che devono intercettare. Ad esempio per telescopi che lavorano nel visibile lo standard di riferimento è il CCD (Charge Coupled Device).

Celle solari e batterie

La fonte di energia principale che alimenta un telescopio spaziale è il Sole, attraverso l’utilizzo di pannelli solari che convertono la luce solare in elettricità che viene immagazzinata in batterie che verranno utilizzate durante la fase in cui il satellite attraversa l’ombra della Terra.

Apparati di comunicazione

Le antenne paraboliche sono utilizzate abitualmente per le comunicazioni con la Terra.  A volte e specialmente nel caso del telescopio Hubble, vengono utilizzati dei satelliti per telecomunicazioni allo scopo di reinstradare la comunicazione verso la base terrestre.

Computers

Gli elaboratori di bordo sono usati per organizzare e processare i dati raccolti durante le fasi osservative. Come per gli altri componenti a bordo dell’osservatorio spaziale anche i computers risultano nel tempo superati dalle nuove generazioni. Ad esempio il telescopio Hubble utilizza il processore Intel 80486 introdotto sul mercato alla fine degli anni ottanta.

Controlli di navigazione e puntamento

L’orientamento e la posizione di un satellite per la ricerca devono essere sempre conosciute in modo esatto. In molti casi una gerarchia di sistemi viene utilizzata per controllare l’orientamento del satellite. Nel caso del telescopio Hubble la cui stabilizzazione avviene in un range di pochi millisecondi d’arco, il sistema include un sensore solare, un magnetometro, un tracciatore di stelle, un giroscopio e degli interferometri ottici necessari alle operazioni di pointing del telescopio.

Sensori

Centinaia e a volte migliaia di sensori, aggiornano costantemente gli ingegneri sullo stato di salute e funzionamento di tutti gli apparati a bordo dell’osservatorio spaziale. La misurazione della temperatura, della corrente, e della pressione sono alcune delle variabili d’ambiente e non tracciate dai sensori.

WMAP Wilkinson Microwave Anisotropy Probe
Spitzer Space Telescope
Hipparcos
SOHO
CHANDRA