L’universo eterno: la controversa ipotesi di Hawking sotto esame

Stephen Hawking

Nel 1981, molti dei più importanti cosmologi del mondo si riunirono presso la Pontificia Accademia delle Scienze, vestigia delle congiunte linee di scienza e teologia, situata in un’elegante villa nei giardini del Vaticano. Stephen Hawking scelse quell’imponente cornice per presentare quella che in seguito avrebbe considerato la sua idea più importante: una proposta su come l’universo avrebbe potuto nascere dal nulla.

Prima del discorso di Hawking, tutte le storie sull’origine cosmologica, scientifiche o teologiche, avevano suscitato la replica: “Cosa è successo prima?”. La teoria del Big Bang, ad esempio – elaborata 50 anni prima della conferenza di Hawking dal fisico e sacerdote cattolico belga Georges Lemaître, che in seguito fu presidente dell’Accademia delle Scienze vaticana – riavvolge l’espansione dell’universo fino a farla risalire a un fascio di energia caldo e denso. Ma da dove proveniva l’energia iniziale?

La teoria del Big Bang presentava altri problemi. I fisici avevano capito che un fascio di energia in espansione si sarebbe trasformato in un ammasso accartocciato, anziché nell’enorme e liscio cosmo che gli astronomi moderni osservano. Nel 1980, l’anno prima del discorso di Hawking, il cosmologo Alan Guth si rese conto che i problemi del Big Bang potevano essere risolti con un’aggiunta: uno scatto iniziale di crescita esponenziale noto come 
inflazione cosmica  che avrebbe reso l’universo enorme, liscio e piatto prima che la gravità avesse la possibilità di distruggerlo. L’inflazione divenne rapidamente la teoria principale sulle nostre origini cosmiche. Eppure il problema delle condizioni iniziali rimaneva: quale era la fonte della minuscola macchia che presumibilmente si sarebbe gonfiata nel nostro cosmo e dell’energia potenziale che l’aveva gonfiata?

Inflazione cosmica

Hawking, nella sua brillantezza, vide un modo per porre fine all’interminabile brancolare nel passato: ipotizzò che non ci fosse né fine né inizio. Secondo 
il documento della conferenza vaticana, il fisico di Cambridge, allora trentanovenne e ancora in grado di parlare con la propria voce, disse alla folla:

“Dovrebbe esserci qualcosa di molto speciale nelle condizioni al contorno dell’universo, e cosa può essere più speciale della condizione che non ci siano confini?”

La proposta senza confini, che Hawking e il suo frequente collaboratore, James Hartle hanno formulato in modo completo in un articolo del 1983, immagina il cosmo con la forma di un volano. Proprio come un volano ha un diametro pari a zero nel suo punto più basso e si allarga gradualmente verso l’alto. L’universo, secondo la proposta dell’assenza di confini, si è espanso dolcemente da un punto di dimensione zero. Hartle e Hawking hanno derivato una formula che descrive l’intero volano – la cosiddetta “funzione d’onda dell’universo” che comprende l’intero passato, presente e futuro contemporaneamente – rendendo vana ogni contemplazione di semi della creazione, di un creatore o di qualsiasi transizione da un tempo precedente.

Funzione d’onda dell’Universo

“Chiedere cosa ci fosse prima del Big Bang è insensato, secondo la proposta dell’assenza di confini, perché non esiste una nozione di tempo a cui fare riferimento”

ha affermato Hawking in un’altra conferenza alla Pontificia Accademia nel 2016, un anno e mezzo prima della sua morte . Ed aggiunse:

“Sarebbe come chiedere cosa si trovi a sud del Polo Sud”

La proposta di Hartle ed Hawking ha radicalmente ripensato il tempo. Ogni istante nell’universo diventa una sezione trasversale del volano; mentre percepiamo l’universo come in espansione ed evoluzione da un istante all’altro, il tempo consiste in realtà di correlazioni tra le dimensioni dell’universo in ogni sezione trasversale ed altre proprietà, in particolare la sua entropia, o disordine. L’entropia aumenta dal tappo alle piume, puntando una freccia emergente del tempo. Vicino alla base arrotondata del volano, tuttavia, le correlazioni sono meno affidabili; il tempo cessa di esistere e viene sostituito dallo spazio puro.

Volàno

La proposta di non-confine ha affascinato e ispirato i fisici per quasi quattro decenni.

“È un’idea straordinariamente bella e provocatoria”

ha detto Neil Turok cosmologo del Perimeter Institute for Theoretical Physics di Waterloo, in Canada, ed ex collaboratore di Hawking. La proposta rappresentava una prima ipotesi sulla descrizione quantistica del cosmo: la funzione d’onda dell’universo.

Presto un intero campo, la cosmologia quantistica, nacque man mano che i ricercatori elaboravano idee alternative su come l’universo potesse essere nato dal nulla, analizzavano le varie previsioni delle teorie ed i modi per verificarle, e interpretavano il loro significato filosofico. La funzione d’onda senza confine, secondo Hartle, era per certi versi la proposta più semplice possibile per questo.

Successivamente, un articolo di Turok, Job Feldbrugge e Jean-Luc Lehners ha messo in discussione la proposta di Hartle-Hawking.

La proposta è, ovviamente, praticabile solo se un universo che si curva a partire da un punto adimensionale, come immaginato da Hartle e Hawking, si sviluppa naturalmente in un universo come il nostro.

Hawking e Hartle sostenevano che effettivamente sarebbe stato così: che gli universi senza confini tenderebbero ad essere enormi, incredibilmente lisci, incredibilmente piatti ed in espansione, proprio come il cosmo reale.

“Il problema con l’approccio di Hawking e Hartle è che era ambiguo”

ha affermato Turok.

Nel loro articolo del 2017, Turok e i suoi coautori hanno affrontato la proposta di Hartle e Hawking senza confini con nuove tecniche matematiche che, a loro avviso, rendono le sue previsioni molto più concrete di prima.

“Abbiamo scoperto che ha semplicemente fallito miseramente”

ha detto Turok.

“Semplicemente non era possibile, dal punto di vista della meccanica quantistica, che un universo iniziasse nel modo in cui immaginavano”

Il trio ha verificato i loro calcoli e messo in discussione i presupposti di base prima di renderli pubblici, ma purtroppo, sembrava inevitabile che la proposta di Hartle e Hawking fosse un disastro.

L’articolo suscitò una polemica. Altri esperti organizzarono una vigorosa difesa dell’idea del non-confine e una confutazione del ragionamento di Turok e colleghi.

“Non siamo d’accordo con le sue argomentazioni tecniche”

ha affermato Thomas Hertog, fisico dell’Università Cattolica di Leuven, in Belgio, che ha collaborato strettamente con Hawking negli ultimi 20 anni della sua vita.

“Ma più fondamentalmente, siamo in disaccordo anche con la sua definizione, il suo quadro teorico, la sua scelta di principi. E questa è la discussione più interessante.”

Dopo due anni di discussioni, i gruppi hanno ricondotto il loro disaccordo tecnico alle diverse convinzioni sul funzionamento della natura. Il dibattito acceso, ma amichevole, ha contribuito a consolidare l’idea che più stuzzicava la fantasia di Hawking.

Persino i critici della formula specifica sua e di Hartle, tra cui Turok e Lehners, stanno elaborando modelli cosmologici quantistici concorrenti che cercano di evitare le presunte insidie ​​dell’originale, pur mantenendone l’immenso fascino.

Abbondano gli interrogativi su come le varie proposte si intersechino con il ragionamento antropico e la famigerata idea del multiverso . La funzione d’onda senza confine, ad esempio, favorisce universi vuoti, mentre per alimentare l’immensità e la complessità sono necessarie quantità significative di materia ed energia.

Hawking sosteneva che la vasta gamma di possibili universi permessa dalla funzione d’onda dovesse essere realizzata interamente in un multiverso più ampio, all’interno del quale solo universi complessi come il nostro avrebbero abitanti in grado di effettuare osservazioni.

Il recente dibattito verte sulla possibilità che questi universi complessi e abitabili siano lisci o fortemente fluttuanti.

In ogni caso forse ci ritroveremo con un’idea dell’essenza del quadro dipinto per la prima volta da Hawking alla Pontificia Accademia delle Scienze.

O forse invece di un non-inizio simile al Polo Sud, l’universo è emerso da una singolarità, richiedendo un tipo di funzione d’onda completamente diverso. In ogni caso, la ricerca continuerà.

“Se stiamo parlando di una teoria della meccanica quantistica, cos’altro c’è da trovare oltre alla funzione d’onda?”

ha chiesto Juan Maldacena , un eminente fisico teorico dell’Institute for Advanced Study di Princeton, nel New Jersey, che è rimasto per lo più fuori dalla mischia recente. La questione della funzione d’onda dell’universo è il tipo giusto di domanda da porre.

“Se stiamo trovando la funzione d’onda giusta, o su come dovremmo pensare alla funzione d’onda, questo è meno chiaro”.

E il dibattito continua…

Perché il peso minuscolo dello spazio vuoto è un mistero così grande?

La quantità di energia che permea lo spazio vuoto sembra troppo piccola per essere spiegata senza un multiverso. Ma i fisici hanno almeno un’alternativa da esplorare.

L’idea controversa che il nostro universo sia solo una bolla casuale in un multiverso infinito e spumeggiante, nasce logicamente dalla caratteristica apparentemente più innocua della natura: lo spazio vuoto. Nello specifico, il seme dell’ipotesi del multiverso è l’inspiegabilmente minuscola quantità di energia infusa nello spazio vuoto – energia nota come energia del vuoto, energia oscura o costante cosmologica. Ogni metro cubo di spazio vuoto contiene solo la quantità di questa energia necessaria ad accendere una lampadina per 11 trilionesimi di secondo. “L’osso nella nostra gola”, come lo definì una volta il premio Nobel Steven Weinberg, è che il vuoto dovrebbe essere almeno un trilione di trilioni di trilioni di trilioni di trilioni di volte più energetico, a causa di tutta la materia e dei campi di forza che lo attraversano. In qualche modo gli effetti di tutti questi campi sul vuoto si equalizzano, producendo una placida immobilità.

Perché lo spazio vuoto è così vuoto?

Sebbene non conosciamo la risposta a questa domanda – il famigerato “problema della costante cosmologica” – l’estrema vacuità del nostro vuoto sembra necessaria per la nostra esistenza. In un universo permeato anche solo leggermente di questa energia gravitazionalmente repulsiva, lo spazio si espanderebbe troppo rapidamente perché strutture come galassie, pianeti o persone possano formarsi. Questa situazione così ben definita suggerisce che potrebbe esserci un numero enorme di universi , tutti con dosi diverse di energia del vuoto, e che abitiamo in un universo a energia straordinariamente bassa perché non potremmo trovarci in nessun altro luogo.

Alcuni scienziati si irritano per la tautologia del “ragionamento antropico” e detestano il multiverso perché non è testabile. Persino coloro che sono aperti all’idea del multiverso vorrebbero avere soluzioni alternative al problema della costante cosmologica da esplorare. Ma finora si è dimostrato quasi impossibile risolverlo senza un multiverso. “Il problema dell’energia oscura è così spinoso, così difficile, che non si hanno ancora una o due soluzioni”, ha affermato Raman Sundrum, fisico teorico dell’Università del Maryland.

Per capirne il motivo, consideriamo cos’è effettivamente l’energia del vuoto. La teoria della relatività generale di Albert Einstein afferma che materia ed energia indicano allo spazio-tempo come curvarsi e la curvatura dello spazio-tempo indica alla materia e all’energia come muoversi. Una caratteristica automatica delle equazioni è che lo spazio-tempo può possedere una propria energia – la quantità costante che rimane quando non c’è altro, che Einstein chiamò costante cosmologica. Per decenni, i cosmologi hanno ipotizzato che il suo valore fosse esattamente zero, dato il tasso di espansione ragionevolmente costante dell’universo e si sono chiesti perché. Ma poi, nel 1998, gli astronomi hanno scoperto che l’espansione del cosmo sta in realtà accelerando gradualmente, il che implica la presenza di un’energia repulsiva che permea lo spazio. Soprannominata energia oscura dagli astronomi, è quasi certamente equivalente alla costante cosmologica di Einstein. La sua presenza fa sì che il cosmo si espanda sempre più rapidamente, poiché, espandendosi, si forma nuovo spazio e la quantità totale di energia repulsiva nel cosmo aumenta.

Tuttavia, la densità dedotta di questa energia del vuoto contraddice ciò che la teoria quantistica dei campi, il linguaggio della fisica delle particelle, afferma sullo spazio vuoto. Un campo quantistico è vuoto quando non vi sono eccitazioni di particelle che lo attraversano. Ma a causa del principio di indeterminazione della fisica quantistica, lo stato di un campo quantistico non è mai certo, quindi la sua energia non può mai essere esattamente zero. Si pensi a un campo quantistico come costituito da piccole molle in ogni punto dello spazio. Le molle si muovono costantemente, perché si trovano sempre entro un intervallo incerto della loro lunghezza di massimo rilassamento. Sono sempre un po’ troppo compresse o allungate, e quindi sempre in movimento, possedendo energia. Questa è chiamata energia di punto zero del campo. I campi di forza hanno energie di punto zero positive, mentre i campi di materia ne hanno negative, e queste energie si sommano e si sottraggono all’energia totale del vuoto.

L’energia totale del vuoto dovrebbe essere all’incirca uguale al maggiore di questi fattori contributivi. (Immaginiamo di ricevere un regalo di 10.000 Euro; anche dopo aver speso 100 Euro o aver trovato 3 Euro sul divano, rimarranno comunque circa 10.000 Euro). Eppure, il tasso di espansione cosmica osservato indica che il suo valore è tra 60 e 120 ordini di grandezza inferiore ad alcuni dei contributi di energia di punto zero, come se tutti i diversi termini positivi e negativi si fossero in qualche modo annullati. Elaborare un meccanismo fisico per questa equalizzazione è estremamente difficile per due motivi principali.

In primo luogo, l’unico effetto dell’energia del vuoto è gravitazionale, quindi ridurla sembrerebbe richiedere un meccanismo gravitazionale. Ma nei primi istanti dell’universo, quando un tale meccanismo avrebbe potuto operare, l’universo era così piccolo fisicamente che la sua energia del vuoto totale era trascurabile rispetto alla quantità di materia e radiazione. L’effetto gravitazionale dell’energia del vuoto sarebbe stato completamente annullato dalla gravità di tutto il resto. Un meccanismo di feedback gravitazionale che regola con precisione l’energia del vuoto nelle condizioni dell’universo primordiale.

A complicare ulteriormente la situazione, i calcoli della teoria quantistica dei campi indicano che l’energia del vuoto avrebbe subito variazioni di valore in risposta ai cambiamenti di fase nell’universo in raffreddamento poco dopo il Big Bang. Ciò solleva la questione se l’ipotetico meccanismo che ha equalizzato l’energia del vuoto sia intervenuto prima o dopo che questi cambiamenti si fossero verificati.

E come avrebbe potuto il meccanismo conoscere l’entità dei loro effetti, per compensarli?

Finora, questi ostacoli hanno vanificato i tentativi di spiegare il peso minuscolo dello spazio vuoto senza ricorrere ad una lotteria del multiverso. Ma recentemente, alcuni ricercatori hanno esplorato una possibile strada: se l’universo non si fosse formato per esplosione, ma avesse invece rimbalzato, in seguito a una precedente fase di contrazione, allora l’universo in contrazione nel lontano passato sarebbe stato immenso e dominato dall’energia del vuoto. Forse un qualche meccanismo gravitazionale avrebbe potuto agire sull’abbondante energia del vuoto di allora, diluendola naturalmente nel tempo. Questa idea ha motivato i fisici Peter Graham, David Kaplan e Surjeet Rajendran a scoprire un nuovo modello di rimbalzo cosmico, sebbene non abbiano ancora dimostrato come avrebbe potuto funzionare la diluizione del vuoto nell’universo in contrazione.

Raphael Bousso ha definito il loro approccio “un tentativo molto valido” e “una lotta informata ed onesta con un problema significativo”. Ha però aggiunto che permangono enormi lacune nel modello e che “gli ostacoli tecnici per colmare queste lacune e farlo funzionare sono significativi. La costruzione è già una macchina di Rube Goldberg, e diventerà, nella migliore delle ipotesi, ancora più complicata quando queste lacune saranno colmate”. Lui ed altri sostenitori del multiverso considerano la loro risposta più semplice, al confronto.

Rube Goldberg machine